Search results for "Peroxisome proliferator"
showing 10 items of 132 documents
Induction of the peroxisome proliferator activated receptor by fenofibrate in rat liver
1992
AbstractThe process of peroxisome proliferation in rodent liver by hypolipidemic compounds and related substances has recently been shown to be receptor-madiated. In the present study, we have examined the effect of oral administration of the strong peroxisome proliferator fenofibrate on the hepatic expression level of the peroxisome proliferator activated receptor (PPAR) in rats. Immunoblots of rat liver cytosols and nuclear extracs using antibodies raised against recombinant PPAR/β-galactosidase fusion proteins revealed a pronounced increase in the amount of PPAR protein in response to fenofibrate treatment. This induction could also be confirmed at the level or RNA by Northern blotting. …
The Peroxisomal 3-keto-acyl-CoA thiolase B Gene Expression Is under the Dual Control of PPARα and HNF4α in the Liver
2011
PPARα and HNF4α are nuclear receptors that control gene transcription by direct binding to specific nucleotide sequences. Using transgenic mice deficient for either PPARα or HNF4α, we show that the expression of the peroxisomal3-keto-acyl-CoA thiolase B(Thb) is under the dependence of these two transcription factors. Transactivation and gel shift experiments identified a novel PPAR response element within intron 3 of theThbgene, by which PPARα but not HNF4α transactivates. Intriguingly, we found that HNF4α enhanced PPARα/RXRα transactivation from TB PPRE3 in a DNA-binding independent manner. Coimmunoprecipitation assays supported the hypothesis that HNF4α was physically interacting with RXR…
Genetic-dependency of peroxisomal cell functions - emerging aspects
2003
This paper reviews aspects concerning the genetic regulation of the expression of the well studied peroxisomal genes including those of fatty acid beta-oxidation enzymes; acyl-CoA oxidase, multifunctional enzyme and thiolase from different tissues and species. An important statement is PPARalpha, which is now long known to be in rodents the key nuclear receptor orchestrating liver peroxisome proliferation and enhanced peroxisomal beta-oxidation, does not appear to control so strongly in man the expression of genes involved in peroxisomal fatty acid beta-oxidation related enzymes. In this respect, the present review strengthens among others the emerging concept that, in the humans, the main …
Sox17 regulates liver lipid metabolism and adaptation to fasting.
2014
Liver is a major regulator of lipid metabolism and adaptation to fasting, a process involving PPARalpha activation. We recently showed that the Vnn1 gene is a PPARalpha target gene in liver and that release of the Vanin-1 pantetheinase in serum is a biomarker of PPARalpha activation. Here we set up a screen to identify new regulators of adaptation to fasting using the serum Vanin-1 as a marker of PPARalpha activation. Mutagenized mice were screened for low serum Vanin-1 expression. Functional interactions with PPARalpha were investigated by combining transcriptomic, biochemical and metabolic approaches. We characterized a new mutant mouse in which hepatic and serum expression of Vanin-1 is …
CD36 as a lipid sensor
2011
International audience; CD36 is a multifunctional protein homologous to the class B scavenger receptor SR-B1 mainly found in tissues with a sustained lipid metabolism and in several hematopoieic cells. CD36 is thought to be involved in various physiological and pathological processes like angiogenesis, thrombosis, atherogenesis, Alzheimer's disease or malaria. An additive emerging function for CD36 is a role as a lipid sensor. Location of CD36 and orthologue molecules in plasma membrane of cells in contact with the external environment (e.g. gustatory, intestinal or olfactory epithelia) allows the binding of exogenous-derived ligands including dietary lipids, diglycerides from bacterial wal…
Argan oil prevents down-regulation induced by endotoxin on liver fatty acid oxidation and gluconeogenesis and on peroxisome proliferator-activated re…
2015
In patients with sepsis, liver metabolism and its capacity to provide other organs with energetic substrates are impaired. This and many other pathophysiological changes seen in human patients are reproduced in mice injected with purified endotoxin (lipopolysaccharide, LPS). In the present study, down-regulation of genes involved in hepatic fatty acid oxidation (FAOx) and gluconeogenesis in mice exposed to LPS was challenged by nutritional intervention with Argan oil. Mice given a standard chow supplemented or not with either 6% (w/w) Argan oil (AO) or 6% (w/w) olive oil (OO) prior to exposure to LPS were explored for liver gene expressions assessed by mRNA transcript levels and/or enzyme a…
Docosahexaenoic acid modulates the expression of T-bet and GATA-3 transcription factors, independently of PPARα, through suppression of MAP kinase ac…
2009
The present study was conducted on CD4(+) T cells, isolated from wild type (WT) and PPARalpha(null) mice, in order to assess the mechanism of action of docosahexaenoic acid (DHA), an n-3 fatty acid, in the modulation of two transcription factors, i.e., T-bet and GATA-3, implicated in T-cell differentiation towards, respectively, T(H)1 and T(H)2 phenotype. The T-cells from PPARalpha(null) mice secreted higher IFN-gamma and lower IL-4 concentrations than WT T-cells. Furthermore, the deletion of PPARalpha gene in T-cells resulted in the upregulation of T-bet and downregulation of GATA-3 both at mRNA and protein levels. DHA exerted not only an inhibitory effect on T-cell proliferation, but also…
Peroxisome proliferator-activated receptor δ (PPARδ) activation protects H9c2 cardiomyoblasts from oxidative stress-induced apoptosis
2005
Activation of peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARgamma plays beneficial roles in cardiovascular disorders such as atherosclerosis and heart reperfusion. Although PPARalpha and gamma have been documented to reduce oxidative stress in the vasculature and the heart, the role of PPARdelta remains poorly studied.We focused on PPARdelta function in the regulation of oxidative stress-induced apoptosis in the rat cardiomyoblast cell line H9c2. Using semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), we showed that PPARdelta is the predominantly expressed isotype whereas PPARalpha was weakly detected. By performing cell viability assays, we …
Mboat7 down-regulation by hyper-insulinemia induces fat accumulation in hepatocytes.
2020
Background: Naturally occurring variation in Membrane-bound O-acyltransferase domain-containing 7 (MBOAT7), encoding for an enzyme involved in phosphatidylinositol acyl-chain remodelling, has been associated with fatty liver and hepatic disorders. Here, we examined the relationship between hepatic Mboat7 down-regulation and fat accumulation. Methods: Hepatic MBOAT7 expression was surveyed in 119 obese individuals and in experimental models. MBOAT7 was acutely silenced by antisense oligonucleotides in C57Bl/6 mice, and by CRISPR/Cas9 in HepG2 hepatocytes. Findings: In obese individuals, hepatic MBOAT7 mRNA decreased from normal liver to steatohepatitis, independently of diabetes, inflammatio…
Physiological and Nutritional Roles of PPAR across Species.
2013
There has been a tremendous amount of information produced on peroxisome proliferator-activated receptors (PPARs). The interest in PPARs was originally driven largely by their role in hypolipidemia and hepatocarcinogenesis, but it soon became evident that they played important roles in the metabolic syndrome and overall health of organisms including regeneration of tissues, differentiation, insulin signaling, overall lipid metabolism, and immune response (reviewed in [1–7]). From a nutritional standpoint, the PPARs are of extreme importance because of their ability to bind and be activated by long-chain fatty acids and their metabolites. Therefore, the PPARs are recognized as ideal candidat…